If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2x-7920=0
a = 1; b = -2; c = -7920;
Δ = b2-4ac
Δ = -22-4·1·(-7920)
Δ = 31684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{31684}=178$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-178}{2*1}=\frac{-176}{2} =-88 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+178}{2*1}=\frac{180}{2} =90 $
| -1/4x-4=-10 | | 0.05x0.05=0.25 | | z=0.36=1.2 | | x=765676677676+648468468486468 | | 0.6x24=14.4 | | x=0.75x+15 | | x2+2x-960=0 | | x^+4x=100 | | x=075x+15 | | 40t=50t(t-1/2) | | 3x=52+4x | | x=075x+1.5 | | x^2-5x+27=0 | | 340=(14+2x)(16+2x) | | 5x^2+50x-280=0 | | -2x-12=3x-19 | | 4x/5+3=12/2−3 | | 4x2-x-3=64 | | 3k-6k-17k=-2-2 | | 3k-2=17k+2 | | x-9=154 | | (3x)/2+3=9 | | 1.2=11t^2+1.2t | | (2x-90)(x+60)=180 | | |v|+9=16 | | (t+5)^2=(t+3)^2 | | 13/5=x/4=10.4 | | 3x2+12x–24=0 | | 1x^-11=49 | | Y=√0.8+0.2-5x | | 7/9x=3/4 | | 5(x+3)=20 |